This research investigates the wettability of selected wood species from Vietnamese community forests, jabon (Anthocephalus cadamba), gmelina (Gmelina arborea.), Manglid (Manglietia glauca), rubber wood (Hevea brasiliensis), and sengon (Paraserianthes falcataria). The study measures the contact angle and evaluates the suitability of these wood species for plywood production. Logs from a community forest were processed to convert into thin slices of veneer using the ro
tary cutting method at a plywood plant. Subsequently, the study analyzed the wetting behavior of the veneer samples resulting from a rotary process on tangential surfaces without smoothing treatment with distilled water. The veneer was then made into plywood using an adhesive nanofiller of phenol formaldehyde mixed with wood bark powder. Ball milling produced nanofillers from the bark of jabon, gmelina, and surian with nanoscale particle diameter size (10–1000 nm). The bonding strength of the plywood was evaluated under cyclic and dry test conditions according to Japanese Standards. The study shows that P. falcataria, H. brasiliensis, and A. cadamba have a smaller contact angle than T. sinensis, G. arborea, and M. glauca. Thus, the higher wettability of P. falcataria, H. brasiliensis, and A. cadamba results in a better adhesive spread and more intimate contact between the wood surface and the adhesive. However, the study found higher bonding strength values for H. brasiliensis and T. sinensis plywood using jabon nanofiller, followed by T. sinensis plywood using surian nanofiller and H. brasiliensis plywood using gmelina nanofiller.
tary cutting method at a plywood plant. Subsequently, the study analyzed the wetting behavior of the veneer samples resulting from a rotary process on tangential surfaces without smoothing treatment with distilled water. The veneer was then made into plywood using an adhesive nanofiller of phenol formaldehyde mixed with wood bark powder. Ball milling produced nanofillers from the bark of jabon, gmelina, and surian with nanoscale particle diameter size (10–1000 nm). The bonding strength of the plywood was evaluated under cyclic and dry test conditions according to Japanese Standards. The study shows that P. falcataria, H. brasiliensis, and A. cadamba have a smaller contact angle than T. sinensis, G. arborea, and M. glauca. Thus, the higher wettability of P. falcataria, H. brasiliensis, and A. cadamba results in a better adhesive spread and more intimate contact between the wood surface and the adhesive. However, the study found higher bonding strength values for H. brasiliensis and T. sinensis plywood using jabon nanofiller, followed by T. sinensis plywood using surian nanofiller and H. brasiliensis plywood using gmelina nanofiller.
Other products: Wooden Powder, Charcoal Powder, Mixed Powder....
http://gmex.vn/josspowder.html
gmex.vn | rawincense.com | bbstick.com | incense.vn | incensestick.vn | bamboostick.vn | bestspice.vn
www.facebook.com/gmexvn
For more details, best offer, please contact us:
Hotline 24/7:
Sale@gmex.vn, Whatsapp:(+84)94 602 6622
Sale1@gmex.vn, Whatsapp:(+84)97 677 6168
Sale2@gmex.vn, Whatsapp:(+84)94 702 6622
Sale3@gmex.vn, Whatsapp:(+84)94 823 9933
Comments
Post a Comment